
NASA-TM-108261

T

Maintenance Strategies for

Design Recovery and Reengineering
Volume 2

FORTRAN Standards

By: Dennis Braley

(NASA-TM-108261) MAINTENANCE
STRATEGIES FOR DESIGN RECOVERY AND

REENGINEERING. VOLUME 2: FORTRAN

STANDARDS (NASA) 23 p

N93-72513

Unclas

Z9/61 0176377

June 1990
Review Copy

Software Technology Branch
Johnson Space Center

National Aeronautics and Space
Houston, TX 77058 Administration

6/29/9O

Revision 2

ACKNOWLEDGEMENTS

The authors wish to thank participants from The MITRE Corporation who helped in the
preparation of this document: Lois Morgan, who merged and edited several unpublished
documents to form this document, Debra McGrath, who reviewed all volumes and continues to

contribute to the design of the environment, and Dona Erb, who also reviewed all volumes.

r

CONTENTS

1.0

2.0

3.0

4.0

Introduction

Need for FORTRAN Standards at JSC

ANSI Standards for FORTRAN 77 and FORTRAN 8X

3.1

3.2

Limitations of FORTRAN 77 Standards

Highlights of Draft FORTRAN 8X Standards

Proposed Local Standards to Aid Maintenance

4.1
4.2
4.3
4.4
4.5

4.6

Summary

Appendix

6.1
6.2

Documentation Standards

Longer Variable Names
Modem Control How Structures

Grouping Subprograms into Virtual Packages
Data Structuring
4.5.1 Inter-Subprogram Communication via Calling Parameters
4.5.2 Inter-Subprogram Communication via COMMON Blocks

Input/Output

7.0 Glossary

8.0 References

Standardized Comment Statements (CDs)
Tool Set

4
4

5

5

7
7
7
9
9

10
11

11

13

13
14

17

19

FIGURES

Figure 1 Structure of a COMGEN-Compatible Subprogram

Figure 2 Comparison of Ada Package and FORTRAN Virtual Package

TABLES

Table 1 Standards Summary 12

.°.

111

iv

FORTRAN Standards

1.0 INTRODUCTION

Programs in use today generally have all of the functional and information processing
capabilities required to do their specified job. However, older programs usually use obsolete
technology, are not integrated properly with other programs, and axe difficult to maintain.
Reengineering is becoming a prominent discipline as organizations try to move their programs
to more modem and maintainable technologies. Johnson Space Center's (JSC) Software
Technology Branch (STB) is researching and developing a system to support reengineering
older FORTRAN programs into a more maintainable form that can also be more readily
translated to a modem language such as FORTRAN 8x, Ada, or C. This activity has led to the

development of maintenance strategies for design recovery and reengineering. These strategies
include a set of standards, a methodology, and the concepts for a software environment to

support design recovery and reengineering.

These products and concepts are documented in a five volume report, Maintenance Strategies
for Design Recovery and Reengineering, of which this is the second volume. This volume
defines new proposed FORTRAN coding standards. Volume 1, Executive Summary and
Problem Statement, contains a statement of the problem and an overview of the STB's

approach toward providing an economic solution to the problem; Volume 3, Methods,
describes the methodology based on experience gained in reengineering a large FORTRAN
program; Volume 4, Concepts for an Environment, presents the concepts and architecture for a
proposed integrated environment to support the standards and methodology. Volume 5, A
Method for Conversion of FORTRAN Programs, records lessons learned in a pilot project that

converted a large FORTRAN program to Ada.

This standards document is intended to provide programmers/analysts in the JSC community

with a description of new FORTRAN coding standards proposed by the STB for use in
programming in FORTRAN 77 and for upgrading existing FORTRAN code to improve its
maintainability. These standards augment existing standards in the mission planning and
analysis domain at JSC. Software conforming to these standards will be in a form that can be
more easily maintained and/or translated into the soon-to-be-released FORTRAN 8x or other
modem computer languages.

Section 2 of this volume is a statement of the need at JSC for new standards with respect to the

dynamic nature of the computer industry and the difficulties encountered in maintenance and
translations. Section 3 discusses the ANSI FORTRAN standards, both the limitations of the

current FORTRAN 77 language standards and the highlights of the draft FORTRAN 8x
standards. Section 4 defines the STB's proposed coding standards. Section 5 summarizes the
new standards.

It is assumed that the reader is already familiar with the existing standards defined in the
mission planning and analysis domain at JSC and documented in Computer Program
Development and Maintenance Techniques (NASA IN 80-FM-55), Automated Software
Documentation Techm'ques (NASA), and Software Development and Maintenance Aids
Catalog (NASA IN 86-FM-27). For the reader unfamiliar with these standards and the related
terminology, an appendix has been provided that includes a brief explanation of each of the
"CD" comment statements that support the existing documentation standards. This appendix

also provides a brief description of STB tools that support the standards. Acronyms and terms

Page I

FORTRAN Standards
I II

used in this volume are defined in a glossary, and references for the document are provided in a
list of references.

2.0 NEED FOR FORTRAN STANDARDS AT JSC

Based on trends in the computer industry over the last few years, it is clear that computer
hardware, languages, and procedures are not static. JSC has a large installed base of
FORTRAN programs; many of these programs are large, complex, and difficult to understand,
resulting in maintenance problems. Many already have been converted from the original dialect
to FORTRAN 77. It is necessary to consider the question, where will that code have to be in
five or ten years? Three possibilities come to mind:

FORTRAN 77 is the current standard, but the next FORTRAN standard, FORTRAN
8x, is close to release. As vendors stop supporting FORTRAN 77, existing

FORTRAN programs will have to be modified to conform to the new standard or be
converted to another language.

Much of the code may move to the Ada language. This will be particularly true on
Space Station Freedom work.

With C being the language of Unix and one of the languages selected for Mission
Operations Directorate (MOD) projects, such as the Flight Analysis and Design System
(FADS), some of the code might be converted to the C language.

Some might ask, why worry about all of this now? We can use a translator when the time
comes that we are forced to move our code forward. Although this would be a nice solution,
the truth is that code translators have proven unsuccessful due to the following major reasons:

Poor existing control flow is translated into poor control flow.

Poor existing data structures remain poor data structures.

Input/output translation usually produces hard to read "unnatural" code in the new
language.

Translationdoes not takeadvantage ofthecode and datapackaging techniquesavailable

inthe newer lan_geS.

Therefore,JSC needs stan_ toprepareforthe fu_ ¢onv_ion of FORTRAN 77 code to

FORTRAN 8x, Ada, or C. Itisemphasized thatthe standardsthatthe STB ispro.po.singin
thisdocument willallow FORTRAN 77 code tobe rcengineemd and convertedeasilytoany of

these languages; the only difference will be the generation of the actual code in the specific
target language.

The standards are also needed to support the upgrading of existing programs to incorporate
newer software engineering methods that have been proven to result in better quality, more
maintainable code. The implementation of these standards will make existing code _e

understandable to programmers/analysts who are requ_ to take over the maintenance of

' - i ill

Page 2

FORTRAN Standards

programs that they did not develop. When trying to understand a large, complex program, a
person can at fhst feel overwhelmed by the size and complexity of the program.

3.0 ANSI STANDARDS FOR FORTRAN 77 AND FORTRAN 8X

To provide for software portability among multiple vendor workstations, JSC has brought
local code in line with the ANSI standards for FORTRAN 77. However, this standard is not

the end of the story for FORTRAN. Consider the following points:

- Some limitations in FORTRAN 77 are in conflict with the some of the goals of

software engineering that support the maintainability of software.

- An update to the ANSI standards for FORTRAN (i.e., FORTRAN 8x) is in progress
within the ANSI standards committee.

- It may be desired to convert existing FORTRAN code to another language at some time
in the future.

For these reasons, this document presents coding standards that do not comply with current
ANSI FORTRAN 77 standards, but are extensions needed to promote software engineering

principles that improve the maintainability of existing software. These proposed coding
standards are supported by FORTRAN compilers today as non-standard extensions to the

language. These coding standards are recognized as a temporary trade-off of portability for
maintainability until the adoption of the draft FORTRAN 8x standards. At that time, code that
meets these coding standards will once again meet the ANSI FORTRAN language standards.
If portability becomes an issue before then for some program with code that has been modified
to meet these new coding standards, tools will be provided to automatically remove the
modifications, returning the code to compliance with ANSI FORTRAN standards. In
summary, only those non-standard features that meet the following criteria are recommended in
this document:

Increase significantly the quality of code.

Can be automatically removed with tools, returning the code to ANSI FORTRAN 77
standards.

Are supported by most ctarent FORTRAN compilers.

Are proposed as part of the FORTRAN 8x standard.

In the following paragraphs, some of the limitations of FORTRAN 77 are described. Then
some of the highlights of the FORTRAN 8x standards are introduced. This should show that
the proposed JSC coding standards will become ANSI language standards when the next
FORTRAN standard is formally agreed upon.

Page 3

FORTRAN Standards

3.1 Limitations of FORTRAN 77

The following list contains the major limitations of FORTRAN 77 that are addressed by the
standards presented in this document:

- Limit of six characters in variable names.

Lack of structured programming constructs, such as a WHILE loop.

Lack of subprogram packaging methods similar to the constructs available in Ada or C.

- Lack of flexibility in data packaging, such as the record structures provided in most
modern languages.

3.2 Highlights of Draft FORTRAN 8X Standards

Based on the available draft of FORTRAN 8x standards, the next ANSI FORTRAN standard

will include the following features:

General features.

-- Longer variable names (a maximum of 31 characters).

-= Free source format.

-- Error event handling similar to Ada exception handling.

New control flow structures.

-- Block DO.

-- Form of the block DO that is equivalent to the DO WHILE.

-- CASE structure.

Modulatization features.

-- MODULE structure similar to the Ada package and C file features.

-- Internal subroutines.

-- Calling argument interface specifications similar to Ada specification and C

prototype features.

- Data structures similar to Ada, C, and Pascal.

-- Record structure.

#

• Page 4

FORTRAN Standards

-- User-defined data types.

-- Includecapability.

-- Abilitytoturnoffthe FORTRAN implicittypingfeature.

-- Declaration of data constants.

These features willgreatly increase the power of the language. They will allow existing code
to migrate over time to better engineered and easier to maintain code. Only the features listed
above that are currently supported by most FORTRAN compilers as extensions to the
FORTRAN 77 standard are recommended as coding standards for JSC.

4.0 PROPOSED LOCAL CODING STANDARDS TO AID MAINTENANCE

This section contains coding standards that are recommended for writing new FORTRAN

programs or upgrading existing programs. FORTRAN partially supports the newer software
engineering concepts, such as abstractions, information hiding, modularity, localizations, and
structured programming. It is possible to write FORTRAN that simulates the features that are
not supported. A FORTRAN program using the guidelines presented in this volume will be
easier to maintain and easier to convert to FORTRAN 8x, Ada, or C. It might even be possible

to perform a semi-automatic translation rather than a conversion process to update the code.

These guidelines are presented with the understanding that no matter how stringent rules are,
they can be evaded. Unless the programmers and engineers believe in the purpose and intent
of a set of standards, they will get around them. It is not claimed that the following guidelines
will make programming in FORTRAN easier or faster. These guidelines are for the benefit of
long-term maintenance or conversion of code. The STB plans to add tools to automate the use
of these standards, but code reviews will be required to ensure their enforcement.

4.1 Documentation Standards

Existing local standards, as established in the mission pl .a_g and analysis domain at JSC,
require each program unit to be documented in a prolog using standardized comment
statements, referred to as CD statements. A program that meets these standards for
documentation and the standards for the COMMON structure is called a COMGEN-compatible

program. The original standards for the information contained in the each of the types of CD
statement are briefly documented in the appendix. Reengineering experience, which was
gained in performing a pilot project to convert an existing FORTRAN program to Ada, has

prompted additional standards related to documentation.

Following are new in-line documentation standards. The first refers to comments embedded in
the body of the code; the remainder are comments to be provided in the prologs to

subprograms:

- Header comment statements are to be embedded before blocks of code to improve the

understandability of the functionperformed by the followingcode.

Page 5

FORTRAN Standards
I |

By current standards, the CD1 statements in a subprogram's prolog provide a short
description of the purpose of the subprogram. This description is to be expanded to
include the identification of the requirement(s) that are met by the subprogram.

By current standards, the CD7 statements in a subprogram's prolog record the
functional description of the subprogram. By the new standard, this description is to
be expanded to explain how and why of the design of the design of the subprogram, in
addition to what the subprogram does. It should not just be a restatement in English of
the flow of the code. It should be written by someone familiar with the algorithm.

If COMMON blocks are used, the variables must be documented either with the STB's

tools or by using the CD4 statements of the prolog.

New PACKAGE and VISIBLE fields to support virtual packages are to be included in
the CI_ statements, which by current standards contain the identification information in
a subprogram's prolog. These new fields are def'med and explained in section 4.4

Figure i illustrates the strucnn'e of a COMGEN-compatible subprogram. Maintainability is
improved by the in-line storage with the code of the following: documentation (standard CD
documentation statements in subprogram prolog), requirements (CD 1 statements), and design
(CD7, CDS, CD9 statements and code block headers).

i iiiiii!iiiiiiiiiiiiii;ii::iCD1 (Requlremente) iii_ii_:iiiii_iiiii_i_:iii_ii_iiiii!i_iii_iiiliiiiiiiiiili!
iiiii;i;iiiii;iiiii;i;i;i;i;ili;iiii;;;]::_i;ili;iCD2(Calling Argument Input) ;iii_iiii_!_iii;;ii;i_ii;iiiiii]i_iiiii;i;ii_;iiii_i_iii_iiiiiiiiiiiiiiiiiii_iiiiiiiiiii_il

:i!:.:-iii!i!i!i_i_iii_ii;ii_ii!iii_ii:.!i_:i_i!i_C04(CommonVarlableOeflnltlons) ii_ i ii i !ii ii

i iiiiiilili_ii_iliiiiiiii!!iilCD5(Internal Variables)
!_ii_:!ii_!ii_iii_!_i_!ii!i_!ii!i_i_iii!!_i!!_!!CD6(Exlemal References)
i!i:iiiii!iiiiiiilili.iiiiiliiii!i!.!i!i!i!:!i!i_CD7(Functional Description and Method)
:::CD:(Assumptions and Umtletions) i_i_;_i?_ii`i_iii_i_i_i!i_i_iii_:_i_ii_%i_i_;%_!_i_ii_:_!ii_i
i i!ii_,',',ii',',','_i!i',i','_:_:?::,i:co_(s_¢_=_co_rnents) iiiiiiiiiiii_i_ii_i_;i_iii_!_i_:_ii_i_;_iii_iii_i_i_i_i_i_iii_i!iiiiiiii_
i i iliiii::iiii_ii::ii::i:_ii?,::iiiii:.iCO 10 (References) ::iiii_ili_::iiii::ii!!::ii::::ii!ii_iilliil;iiii::i::iiiii

:;:;ii_i_ii_!_!_i!ii_i!_i_!!i_!_i_iill_ii_i_ii_i_ii_i_iii_i!iii_iii!iiiiiill_i_i;i;_!_i_!i_ii_!_!i_:_;;;!!!i!iiiii!ii_iii!iii_i_i_ii!i!_i_ii;ii_i_i_ii_ii_ii_ii!i!;_iii_ii_ii_iii!i_i_iiiii!i_iiii_i!!!_;

_:_i!i!iiiiiii!iii!!iiii_i_!ii!_iii_i!_i!_!ii!i!!i!_!i_!i!!!_:._!:_;_;_a_.;___.__!_iiii!ii_!i!iiii_ii_iii!ii!!_!iii!i_ii_ii!i_ii_!ii_i_i_i!!i_iiiii_!i_i_i_!ii!i_ii_!_i_i!_i_i!_i::i
:::i:i:i:[:i:i:i:_:i:i:i:i:i:i:i:_:i-:i:;:i:i:_: i_._ii_ii!;i!?!.!i!_!i_i!i!ii;!_!i!i!_!i!i!i_:i!_!;!_!i!i!;!_!_!;_!!_!!!_!!!!!_!!!: :

:_i!i_:i_i',',',ii',ii',ii',iii!i!',',i!',!i',i!'_!i!:,i_':!!!ii_,Cod._ock1 _:_!_!_!_!i_!_!_!_i!;!ii_!;_:_!_;_;i_i_!_!_:_i_i_;_!_!_i::

?:i:i?iii_iiii!_!i!i_!i;_!i_i!_iiiii!!i!_i!:!i!%mmentstatement header for code block N

iilil ...i!!i !i i !! t
Figure 1. Structure of a COMGEN-Compatible Subprogram

Page 6

FORTRAN Standards

Another type of documentation, which is often overlooked, is the names of source fries.
Under the new standards, source file names wiU match the subprogram names if the operating

system allows it. Also, if allowed by the operating system, file name prefixes for owning
packages is a useful convention. The VAX Ada conventions for the names of package
specifications, package bodies, and separate units are good examples to follow.

4.2 Longer Variable Names

The use of longer,more meaningful variablenames improve thereadabilityof sourcecode.

For thoseworried about thepossibleneed toreturnthecode tothepresentsixcharacterformat

forportabilitytoa compiler withoutan extensionsupportinglongernames, one of the

followingtwo methods can be used:

Use meaningful variable names with a maximum of 24 characters and if it becomes

necessary later to convert them back to the six character format, perform global search-
and-replace edits. The STB plans to provide tools to support the capability of reducing
24-character names to 6 characters, if it is needed.

Leave the variables in six character format, but place comments in the CD9 statements,

which containspecialcornrncnts,inthefollowingform:

CD9 short_name long_name

This willprovideinformationthatcan be used latertochange tothelongernames when
thecode ismoved tothe FORTRAN 8x standardor istranslatedtoanotherlanguage.

4.3 Modern Control Flow Structures

As far as FORTRAN allows, use only the standard structured program_. " .g constructs.
Reduce the use of the GO TO; use the GO TO only if no structured opuon is available. To

accomplish these goals, the use of the FORTRAN 77 Block IF and the following constructs,
which are supported by most compilers, are recommended:

- Block DO.

- DO WHILE.

Both of theseconstructsate militaryextensionstoFORTRAN 77 and areinthe draft
FORTRAN 8x standards.

4.4 Grouping Subprograms into Virtual Packages

The Ada package and C file concepts are among the most useful features of these languages.
These concepts group logically related subprograms together at a higher level of abstraction,
the module level. In this document this module level of abstraction in FORTRAN programs is

referred to as a "virtual package." Procedures and tools can provide the capability of defining
virtual packages in FORTRAN 77. It requires a somewhat artificial technique, making use of

Page 7

FORTRAN Standards

comment statements and specification data files to define the virtual packages. However, the
use of these techniques will aid in code maintenance. In addition, it will allow the STB's
automated documentation tools to produce even better documents than currently possible since
it will properly group the separate subprograms into higher level modules.

To identify which package each subprogram is contained in, the addition of the following two
fields to every FORTRAN subprogram's CD0 statements is needed:

- Statement of the form "PACKAGE = package_name".

- Statement of the form "VISIBLE = yes or no".

Each subprogram in a virtual package will have the same package_name field value. The
specification/'Lmplementation separation of Ada can be provided by the setting VISIBLE = YES
for externally visible subprograms and setting VISIBLE = NO for subprograms internal to the
virtual package. VISIBLE = YES subprograms are called by subprograms with different
values of PACKAGE. Subprograms with VISIBLE = NO axe called only by subprograms
with the same value of PACKAGE. Figure 2 compares the form of an Ada package and the
form of a FORTRAN virtual package implemented through an external Module Definition
Table (MDTAB) emulating the Ada Package specification with the package identification
statements in the FOTRAN subprograms' in-line documentation prologs.

A pre-processing too! will be developed to help ensure compliance. However, a tool cannot
guard against intentional misuse of the system. For instance, if the PACKAGE field were set
to the same value for every subprogram in the program, or if the pre-processing tool were
never run against the program, the procedure would not work. Code reviews are required to
guard against this problem.

iiiii_::ii::iiiiiiili::;i;i_i_i_::_i;i_i;i_i_i_i_::_;i_i_i;i_i_i_i_i_i_i_i_:_i_i_i_iiii:_ii_iii_i!ii:_iiiii_i_ii_iiiiiii!ii:_ii!iii!i_ii!:_iiii!i_i_:i_::_iiii::ii_iiii_iii:_ii_:i!:_iiiii_i_i_iii::!iiii::i::ii!::iiii............................FO'i_Y _lii:!ili_::_i!iiiiii!iii::iii::i::i::i!i!i::i!::!i::iiiiiiiii!iii:.iii::iii!i!:::,i!ii::::i::i!i!i::_!i!ii!i!i!i!i!i!i!i!ii!!ii!!iiliiii

i!izlii!::ili_ili!i_Pi©lkl_ II llpee iiiiiiiiiliiiii_iliiii!iiiiii_iiiiii_!iii#I_zckS_ I B- "--iii!i_iiiiii!!i!iiii_iiiiVlaull P.¢kllle $1_ i_iiiiiiiii!i_iiii_iiiiii_'_F_R_YRx_ii_i_iiii_i!_ii_:!_:_:i_!
::.::::?:i:.::i:i...iiii!iiiiiii::?_:_::iiii_ ..!g_ :'m..Yi::iii::::::i::::_ModuleDef!nit!on Table)_!!ii::::i::::ii::iiiiSubprogrzml ?:!_::::!i::i!i!::i::::ii

....I : i _ :: Package ID :::r:!::;:;:i::l I I I

I :::: :::i: N " ::::I _llcgil_ _ I
:: I ':::: _ i::: : (I_IN _ ::l =, I I,,-4 I::

i: IVisib_eO_'a_ _ sl)_:i::ii: Vi,ibleOp,_'ation_ Body _ ::l v_oe _orno I'I I I
I i:!_i !;:: Vis o_o Sd:o'oonku'n I IO :::I ____ - . I I I,_ :
:l " :_i:: .'_ . ::_uoprogram _ooy _i!i)ii_ii

V , O ;all N ::: V :ali.onN ." _-:::i:::!::!::_

I i!iiii ii:!oF-..=.., iiiiiiiiiiii!!ii ii!ii}iii!iiiiiiiiiiiii!iiiiii !ii!i i!i iiiii ? ii! i ! i! !ii! ii i ii i !ii } !i ! ii ii !iii i:! i
, ; ,_ii_i r: - ii4_iii::iiii!_isi::i_::i::::i::iiiii::

Except)on M Spec :!:!:_:_: Hidden Subprognlm M O i:_i:,:i..............":...... ;i:_::::ii;i.::.i;:.:i:ii...... _:_:_::::i::

iiii:iiii_iiiiiii_i_ii!i_:;ii:::._iiiiiii!iii_i!i!iii!i!i!i_:i!_!!_i!i!ii;i!i!ii!iiii_!_!_iii_:_i::i!i::!!.i . :: Hidden Common I IO _i_!!ii_i_iii_iiiii_:iiiii_:i!i::iii_iiiii_i_i_:!_:!_:i_i_iii::_:_i_:_i_:/:_ii_i_ii_i_i_iii_!i_:.i_;_;_i::_i_:.:._._;:.:._._

i - ii ;i
iii!i!iii!iiii!!!i!i:!ii!iii!i!iiii!_!i!i!ii!_}_iii!ii_=!_!ii_!_!_i!iii_f!!{_}ii_!i_i_i_f_=_ii_ii!iii_ii_!!_:_!_3t:::XCep,_l Handler M Hidden C_ntnon O I0 :::_!_=1!i!_=!i!!:_!igi_!!i_i!_!!!i_!!!_ii!iiii_i!:!i!!:i!ii_i!i::iii_!_-i!iii_i!i!iiii_i_:_!_!_:!ii_iiii_!_1ii!1:i!i_::!i!i!_!ii!_iiii:i:i_:!!i:!!iii!_!:.!!i!!_.i!i_!_:i::!!_:!_:!_i.ii:_i

Figure 2. Comparison of Ada Package and FORTRAN VirtualPackage

Page 8

FORTRAN Standards

Based on the CD0 package identification statements, the program element table (PETAB) used
bv the STB's documentation tools will be modified to include the virtual package name for each

s_.bprogram. Also a new data set will be defined that will show the following for each virtual
package:

- Names of the files that form the virtual package.

- Names of the visible entry points to the virtual package.

- List of the COMMON blocks to be "hidden" in the virtual package.

It is recommended that interfaces with virtual packages be clearly documented in interface
control documents (ICD), and that these interfaces be managed by the development or
maintenance team. Documentation and enforcement of stable interfaces improves

maintainability and can help with problem identification.

4.5 Data Structuring

In building a FORTRAN program of any size, the logical blocks of the program are broken up
intologicalunitsand coded as subprograms. The primary method of inter-subprogram
communication has traditionally been by the use of FORTRAN labeled COMMON blocks.
The alternative method is by use of calling parameters.

4.5.1 Inter-Subprogram Communication via Calling Parameters

Program interfaces via COMMON blocks are much harder to maintain than interfaces via
subprogram calling parameters. Although calling parameters can be less machine-efficient than
passing values via COMMON blocks, in most cases the increased maintainability is worth the
performance cost. It is preferable for virtual packages to communicate with other virtual
packages via calling parameters. Calling parameters arc preferable for internal communication
within virtual packages as well, but exceptions are more easily justified for data that is common
to an entire package on the "package-body" level.

However, it is not possible to dogmatically require a/l virtual packages to communicate with
other virtual packages only via calling parameters because of limitations in FORTRAN 77.
Communication with a large virtual package entirely by the use of calling parameters may
require so many calling parameters that the number of parameters could become a problem,
possibly outweighing the drawbacks of using COMMON blocks. This cannot be solved in
FORTRAN until the program is converted to FORTRAN 8x, which will support record
structures that reduce the number of calling parameters. Until then, COMMON blocks will

probably have to be used.

Communication with a small virtual package usually can use only calling arguments, and it is to
be strongly recommended that calling parameters be used in these cases. However, in
scientific work passing mathematical constants in this way to low level subprograms presents a
problem. It also should be noted that high level executive subprograms that drive a program
may not fit well into packages and may also need access to most of the data in the program.

Page 9

FORTRAN Standards
[1IIII

This also must be treated on a case-by-case basis. Each project will have to decide if certain
global COMMONs are to be allowed or if calling arguments are to used.

4.5.2 Inter-Subprogram Communication via COMMON Blocks

The use of COMMON blocks must be carefully controlled. Use them only to pass single
entities, document them well, and do not allow them to be used as catchalls to pass things like

unrelated flags. Code reviews should be used to closely scrutinize COMMON block usage.

The programmer/analyst should be prepared to explain why the COMMON block was
necessary and preferable. "Because it was easier" is not a good reason. Because I can show
that performance would be unacceptable without it" is a good reason.

Subprogram communication by use of FORTRAN COMMON blocks works well only if the
COMMON is well structured and documented. The standards presented in the following

paragraphs are an effort to support these conditions. The following two major methods for
COMMON block management have been used within the mission planning and analysis
community over the years:

INCLUDE capability.

Standard COMMON database (CDB) and the tools that support it.

Both of these methods have their strengths and weaknesses. The main problem with them
relates to the need for unique variable names. The next FORTRAN standard with its longer
variable names and record structures will solve this problem. The standards presented here

support the continued use of both methods with the only changes being some additions to the
INCLUDE method for the purpose of documentation. :

INCLUDE Method: : : :

In this method, the s_ifications for a given COMMON block are defined in one place and
then included in each subpro_ that needs to access that COMMON block. This method is
available on several computer systems now and _ _ Se _xt ANSI standard for
FORTRAN 8x. The INCLUDE files should map well to record structures in the newer

languages. The only requirements that these new local standards place on this method axe as
follows:

INCLUDE file must contain information on the identification and purpose of the

COMMON block in the CD0 and CD1 comment statements, respectively.

- COMMON variables must be defined in either of two ways:

-- As CD4 statements in the INCLUDE file.

-- Or in a CDB as required by the standard COMMON concept.

Page 10

FORTRAN Standards

COMMON Database (CDB) Method

This method is based on a series of tools that automate the maintenance, documentation, or re-
structuring of FORTRAN COMMON blocks. These tools provide an automated means for the
generation and automatic insertion of COMMON specification statements into the code of
FORTRAN subprograms.

The CDB contains the information necessary to regenerate all the required specification

statements in every subprogram for those COMMON blocks that the programmer has placed
under standard COMMON control. To do this the CDB contains the following:

- Detailed structure of each COMMON block.

- For each variable, its name, type, dimension, and definition.

- List, by subprogram, of the COMMON variables required in each subprogram.

Various tools have been developed to automate the creation, comparison, display, update and
the verification of the CDB. These tools will be modified to support longer variable names and

the optional automatic conversion of the COMMON structme to the INCLUDE format. The
tools will also be upgraded to generate the structure of the COMMON in the newer languages if
the code must be translated to FORTRAN 8x, Ada, or C.

4.6 Input/Output

Input/output statements should be separated from the rest of the program where possible, i.e.,
they should be encapsulated in separate subprograms as much as possible. The fewer the
number of compilation units that contain the input/output statements of a program, the easier it
will be to convert the program to another language. This standard introduces the problem of
how to move the data from the input/output subprogram(s) to and from the low-level virtual

packages that use and/or compute the data. There are three basic methods for accomplishing
the data transfer:.

- COMMON blocks.

- Calling argument parameters.

- Entry points in the package that send data to and receive data from the input/output
subprograms via calling arguments.

Each of these methods has advantages and disadvantages. The choice of which to use will have
to be made on a case by ease basis.

5.0 SUMMARY

The standards presented in this volume are added to the existing standards defined in the
mission planning and analysis domain at JSC. The goal of this set of standards is to improve
maintainability and to permit relatively automated translations to newer languages. Where

Page 11

FORTRAN Standards

FORTRAN 77 does not provide constructs, virtual constructs have been devised. The
adoption of these standards at this time will give the JSC software community an early start on
moving to the FORTRAN 8x standards which will include many of these capabilities. Table 1
summarizes the new FORTRAN coding standards and lists the primary benefit of each.

Table 1. Standards Summary

STANDARD

Documentation
Header statement before code blocks

Requirements in CD1 statements
Rationale in CD7 statements

Virtual package identification

Longer, more meaningful variable names
Modem control flow structures

Block DO
DO WHILE

Grouping subprograms into virtual packages

Data structuring
Preferred use of calling parameters
Controlled use of COMMON blocks

INCLUDE

COMMON database concept
Preferably encapsulate input/output in

separate subpm_Lms

|1 ill f i

BENEFIT

Understandability
Understandability and traceability
Design knowledge capture
Maintenance

Understandabiliw
Maintenance and understandability

Higher levelof abstraction,understandab_

Maintenance

Maintenance

Maintenance and support to furore
conversions

Page 12

FORTRAN Standards

6.0 APPENDIX

The appendix contains brief definitions of the standardized comment statements and
descriptions of the tools in the STB tool set. For further information, the reader is referred to
Automated Software Documentation Techniques (NASA) or Computer Program Development
and Maintenance Techniques (NASA IN 80-FM-55).

6.1 Standardized Comment Statements (CDs)

The following is an annotated list of the standardized comment statements (known as CDs) that
provide in-line documentation in a COMGEN-compatible subprogram.

CI_ IDENTIFICATION.

- Information on programmer, modifier, documenter, formulator:

- Name, organization, date.

CD1 PURPOSE.

- Short description of what the subprogram does, not how it does it.
- Longer description can follow, but short summary must be first.
- Topic sentence describes the module; the rest elaborates the module.
- May be the actual requirement paragraph(s) allocated to this module.

CD2 CALLING ARGUMENT INPUT.

- Name, dimension, type,length,definition.

- Optional extensionforotherinputssuch as datafiles.

CD3 CALLING ARGUMENT OUTPUT.

- Name, dimension, type,length,definition.

- Optionalextensionforotheroutputssuch asdatafiles.

CD4 COMMON VARIABLE DEFINrHONS.

Can be inserted automatically by the INSDOC processor (see following
annotated list of STB tools) from definitions in the COMMON database

(CDB).
Optional extensionforotherglobaldatasuch asdatafiles.

CD5 INTERNAL VARIABLES.

Name, dimension, type, length, definition.
Optional extension for other local data such as temporary data files.

Page 13

FORTRAN Standards

CD6 EXTERNAL REFERENCES.

External data fries, external subprograms referenced, subprogram
referenced by.
Normally not used - can be obtained from RELREF processor (see
following annotated list of STB tools) or display of the ERTAB, the
Elements Referenced Table.

CD7 FUNCTIONAL DESCRIPTION AND METHOD.

- Logical flow of subprogram in narrative form.
- Optionally includes PDL.

CD8 ASSUMPTIONS AND LIMITATIONS.

CD9 SPECIAL COMMENTS.

CD10 REFERENCES.

References to formal external documentation.

References to other related subprograms (i.e., SEE ALSO).

CDll KEYWORDS.

6.2 Tool Set

The following is an annotated list of the existing STB tool set that supports design recovery

and reengineering.

AUTODOC Automatic Subprogram Documentation Prtx_ssor, tool that generates
documentation reports using CD statements and data sets.

CAUDIT Code Auditor, tool that cheeks for coding standards violations

CCREF COMMON Block Cross-Reference Processor, tool that generates COMMON
cross references.

CLEANUP Cleanup Processor, tool that cleans up COMMON; __serts CD statements;

alpha_tizes _c_afion statements. ___sequences statement numbers.

CO'ARE Symbolic File and Element Comparison _¢ssor, tool that compares two fries

(recognizes some data sets and does smart comparisons).

CONVERT Conversion Processor, tool that performs conversion operations on source
code. :

CREATE Database Creation processor;, tool that creates data sets.

: z:

Page 14

FORTRAN Standards
i '!!

DDT

DEFINE

DEPCHT

DISPLAY

DOC_EN

DSDGEN

FORREF

INSDOC

MAZE

MERGE

OMNIBUS

QUERY

RELREF

SCANPF

SETGEN

SPECPN

SUBDOC

TABLES

Detailed Debug Trace Program; tool that inserts debug statements.

Documentation Definition Processor, tool that inserts definitions in CD
statement section in free form.

Dependency Chart Generator;, tool that generates hierarchical call graphs.

Data Set Display Processor; tool that displays a data set.

Document Editor, tool that generates a document (ASCII source file
processing).

Data Structure Definition Processor;, tool that allows a user to preview a data
structure for use in DOCGEN or to build CD and/or V statements.

FORTRAN Cross-Reference Display Processor;, tool that generates symbol and
statement number cross references.

COMMON Variable and Keyword Documentation Insertion Processor;, tool that
inserts CD4 variable definitions (with C option) and keyword CD11 statements

(K option).

Memory Map Analyzer, tool that displays memory map (uses Unix 'nm').

File Merge Processor, tool that merges two data sets.

Omnibus Element Processor, tool that creates omnibus elements for symbol data
sets.

Query Processor, tool that queries data sets.

Relocatabl¢ Element Cross-Reference Progr'mn; tool that generates calls/caged-
by list, including COMMON.

Control Script Generator, tool that generates control scripts.

Dependent Element Set Generator, tool that generates list of subprograms called
in and below a given subprogram.

Common Variable Specification Statement Generation Processor, tool that
restructures COMMON; generate COMMON specifications.

Subprogram Documentation Processor, tool that generates subprogram
descriptions using CD statements.

Tables Processor, tool that generates tables for documents.

Page 15

FORTRAN Standards
II

TOCGEN Table of Contents (TOC) Generator;, tool that displays table of contents for Unix
directory, optionally includes program size information.

UPDATE

VERIFY

Database Update Processor; tool that updates a data set.

Database Verification Processor;, tool that verifies a data set.

_ -5-

Page 16

FORTRAN Standards

7.0 GLOSSARY

Acronyms:

CD

CDB

FADS

ICD

JSC

MOD

PETAB

STB

Terms:

arbitrary FORTRAN

COMGEN-compatible

COMMON database

design recovery

CD statement, the in-line documentation standard in the mission
planning and analysis domain. For further information, the reader is
referred to Computer Program Development and Maintenance
Techniques, NASA IN 80-FM-55.

COMMON database of a program meeting the standard COMMON
concept in the mission planning and analysis domain; primary
documentation of a FORTRAN program's COMMON structure;
used by many of the STB's tools. For further information, the
reader is referred to Computer Program Development and
Maintenance Techniques, NASA IN 80-FM-55.

Flight Analysis and Design System.

Interface Control Document.

Johnson Space Center.

Mission Operations Directorate.

Program Element Table.

Software Technology Branch.

FORTRAN program that is not compatible with the COMGEN
standards in place for JSC's mission planning and analysis domain.

FORTRAN program that is compatible with the COMGEN
standards in place for JSC's mission planning and analysis domain.
For further information, the reader is referred to Computer Program

Development and Maintenance Techniques, NASA IN 80-FM-55.

COMMON database of a program meeting the standard COMMON
concept in the mission planning and analysis domain; primary
documentation of a FORTRAN program's COMMON structure;

commonly referred to as the CDB; used by many of the STB's
tools. For further information, the reader is refen'ed to Computer

Program Development and Maintenance Techniques, NASA IN 80-
FM-55.

Reverse engineering, the first step for maintenance or reengineering.

Page 17

FORTRAN Standards

environment

framework

FORTRAN 77

FORTRAN 8x

forward engineering

package

re.engineering

reverse engineering

software maintenance

subject program

subprogram

"X"-option

virtual package

Instantiation of a framework, i.e., an integrated collection of tools.
It may support one or more methodologies and may also provide a
framework for third party tools.

Software system to integrate both the data and the control of new
and existing tools; usual components include a user interface, object
management system, and a tool set.

ANSI standards for FORTRAN in effect in 1990.

Future ANSI standards for FORTRAN; expected to be approved
and released soon; draft standards have been circulated; unofficially
referred to as FORTRAN 90.

Process of developing software from "scratch," through the phases
of requirements, design, and coding.

"A collection of logically related entities or computational resources"
(Booch).

"The examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form"
(Chikofsky and Cross, 1990); combination of reverse engineering
and forward engineering.

"The process of analyzing a subject system to identify the system's
components and their interrelationships and create representations of
the system in another form or at a higher level of abstraction"
(Chikofsky and Cross, 1990); the first step for maintenance or
reengineering;reverseof forward engineering;processof starting

with existingcode and going backward through the software

development lifecycle.

"Process of modifying existing operational software while leaving
its primary functions intact" (Boehm, 1981).

Program that is being maintained or re,engineered.

Subroutineor function.

Reference to a mechanism of using a letter on the execute statement
to indicate the control path to be followed in the execution of a

program or processor, used by the Unisys, Unix, and DOS
operating systems.

Package concept as defined by Booth, but implemented either in
Ada, which enforces the concept, or in a language in which the

concept must be supported procedurally.

Page 18

FORTRAN Standards

8.0 REFERENCES

Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall,
1981.

Booch, Grady, Software Engineering with Ada, Menlo Park, CA: Benjamin/Cummings
Publishing Co., Inc., 1983.

Booch, Grady, Software Components with Ada, Menlo Park, CA: Benjamin/Cummings

Publishing Co., Inc., 1987.

Braley, Dennis, Computer Program Development and Maintenance Techniques, NASA IN 80-
FM-55, Houston, TX: NASA Johnson Space Center, November 1980.

Braley, Dennis, Automated Software Documentation Techniques, Houston, TX: NASA
Johnson Space Center, April 1986.

Braley, Dennis, Software Development and Maintenance Aids Catalog, NASA IN 86-FM-27,
Houston, TX: NASA Johnson Space Center, October 1986.

Braley, Dennis, "A Software Recovery Methodology," unpublished internal document,
Houston, TX: NASA Johnson Space Center, FR51, January 1990.

Braley, Dennis, "FORTRAN Standards for Future Translation and/or Design Recovery,"
unpublished internal document, Houston, "IX: NASA Johnson Space Center, FR51, January
1990.

Braley, Dennis and Allan Plumb, "An Environment for Software Conversion and Code
Recovery," unpublished internal document, Houston, TX: NASA Johnson Space Center,
FR51, March 1990.

Braley, Dennis and Allan Plumb, Maintenance Strategies for Design Recovery and
Reengineering: Methods, Volume 3, Houston, "IX: NASA Johnson Space Center, June
1990.

Braley, Dennis and Allan Plumb, Maintenance Strategies for Design Recovery and
Reengineering: Concepts for an Environment, Volume 4, Houston, TX: NASA Johnson
Space Center, June 1990.

Chikofsky, Elliot J. and James H. Cross II, "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, January 1990.

Clark, Robert G., Programming in Ada: A First Course, Cambridge: Cambridge University
Press, 1985.

Fridge, Ernest M., Maintenance Strategies for Design Recovery and Reengineering : Executive
Summary and Problem Statement, Volume 1, Houston, TX: NASA Johnson Space Center,
June 1990.

Page 19

FORTRAN Standards
I1

George, Vivian and Allan Plumb, A Method for Conversion of FORTRAN Programs,
Houston, TX: Barrios Technology, Inc., January 1990.

Page 20

